L Concentration Estimates for the Laplacian Eigenfunctions near Submanifolds

نویسنده

  • KATYA KRUPCHYK
چکیده

We study L bounds on spectral projections for the Laplace operator on compact Riemannian manifolds, restricted to small frequency dependent neighborhoods of submanifolds. In particular, if λ is a frequency and the size of the neigborhood is O(λ−δ), then new sharp estimates are established when δ ≥ 1, while for 0 ≤ δ ≤ 1/2, Sogge’s estimates [17] turn out to be optimal. In the intermediate region 1/2 < δ < 1, we sometimes get sharp estimates as well. Our arguments follow closely the recent work [7] by Burq and Zuily.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoparametric submanifolds and a Chevalley-type restriction theorem

We define and study isoparametric submanifolds of general ambient spaces and of arbitrary codimension. In particular we study their behaviour with respect to Riemannian submersions and their lift into a Hilbert space. These results are used to prove a Chevalley type restriction theorem which relates by restriction eigenfunctions of the Laplacian on a compact Riemannian manifold which contains a...

متن کامل

Spin geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds

From the existence of parallel spinor fields on CalabiYau, hyper-Kähler or complex flat manifolds, we deduce the existence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the submanifolds are compact, we obtain sharp estimates on their Betti numbers. When the ambient manifold is Kähler-Einstein with positive scalar curvature, and...

متن کامل

Gradient estimates for eigenfunctions on compact Riemannian manifolds with boundary

The purpose of this paper is to prove the L∞ gradient estimates and L∞ gradient estimates for the unit spectral projection operators of the Dirichlet Laplacian and Neumann (or more general, Ψ1-Robin) Laplacian on compact Riemannian manifolds (M, g) of dimension n ≥ 2 with C2 boundary . And we also get an upper bounds for normal derivatives of the unit spectral projection operators of the Dirich...

متن کامل

Spinc geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds

From the existence of parallel spinor fields on Calabi-Yau, hyper-Kähler or complex flat manifolds, we deduce the existence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the submanifolds are compact, we obtain sharp estimates on their Betti numbers which generalize those obtained by Smoczyk in [49]. When the ambient manifold is...

متن کامل

L1-Estimates for Eigenfunctions of the Dirichlet Laplacian

For d ∈ N and Ω 6= ∅ an open set in R, we consider the eigenfunctions Φ of the Dirichlet Laplacian −∆Ω of Ω. If Φ is associated with an eigenvalue below the essential spectrum of −∆Ω we provide estimates for the L1-norm of Φ in terms of its L2-norm and spectral data. These L1estimates are then used in the comparison of the heat content of Ω at time t > 0 and the heat trace at times t′ > 0, wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016